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De Broglie-type relations for the energy and momentum of the space-localized 
solutions to a class of nonlinear complex Hamiitonian evolution equations are 
derived without any "external assumptions." It is found that the Hermitian norm 
of the same solutions plays a more fundamental role than a mere normalization 
constant. The quantum commutator is obtained from the infinite-dimensional 
complex Poisson bracket, and it is in complete agreement with the above find. 
The significance that such relationships should exist, while being entirely 
independent of the concepts of pointlike particle and/or point charge, is briefly 
discussed. 

I .  I N T R O D U C T I O N  

The adjective space-local ized will appear many times in this paper. The 
meaning assigned to it for the present purposes is given by the following: 

Definition. A singularity-free function 0 = 0 (x ,  t) o f  the coordinates 
xi and the time t will be called space-localized (or localized) if t0(x,  t)l ---> 0 
sufficiently fast when Ixl ----> ~,  so that its Hermitian norm (0 ,  0 )  remains 
finite for all time: 

(l.1) 

It is known that certain nonlinear complex  wave  equations, in one or 
more dimensions, possess space-localized solutions (which may  be called 
solitary waves),  including solitons (in the one-dimensional  case). In a recent 
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paper (Bodurov, 1996) it was shown that if in teract ion terms are introduced 
in those equations according to the rule 

- -  --+ + igAr [z = 0, 1, 2, 3 (1.2) 
ax ~' Ox w 

where g is an arbitrary real constant, then (under certain conditions) the 
motion of the localized 0-field, as a discrete entity, is identical to that of a 
point charge in an electromagnetic field whose 4-potential is A~. The same 
correspondence, although for a specific single equation, is obtained in 
Bialynicki-Birula and Mycielski (1976). Such results naturally lead to the 
following questions: 

(a) If the motion of localized d?-fields can represent the dynamics of 
point charges in electromagnetic fields, then can they represent also the de 
Broglie waves associated with point charges, or point masses? 

(b) If the answer is yes, then are there de Broglie-type relations which 
connect the t~-field energy (and momentum) to the frequency (and the wave- 
vector) of those waves? 

(c) If the answer to the second question is yes, then what is the constant 
of proportionality in those de Broglie-type relations? 

The objective of this paper is to present answers to the above questions 
(Section 3). Perhaps more importantly, it is to show that the unexpected 
answer to the third question is supported by at least one more independent 
argument (Section 4). 

Despite the large number of works on nonlinear field theories, there 
seem to be only a few which address directly any of the above questions. 
The following brief review does not claim to be exhaustive: 

Bialynicki-Birula and Mycielski (1976) investigated a nonlinear version 
of the Schrrdinger (NLS) equation, in which the constant h appears explicitly 
and the nonlinear term is logarithmic. They discovered that such an equation 
admits closed-form space-localized solutions, which they called gaussons .  

Some of the results derived in the present paper (Section 3) for a class of 
nonlinear evolution equations may be found in that work derived specifically 
for the logarithmic NLS equation. For example, there it is shown that freely 
moving gaussons are de Broglie-type waves modulated by functions of the 
form exp[ - (x  - vt)2/12]. 

Enz (1985) may have been the first to show that de Broglie-type relations 
can be derived from at least one nonlinear wave equation--that is, from a 
particular space-localized solution of the s ine-Gordon equation in one space 
dimension, called the breather. The constant of proportionality in those rela- 
tions (appearing in place of Planck's constant) is expressed solely in terms 
of the breather's parameters. The four conclusions to which Enz arrives are 
fully supported by the results of this paper. In addition, it is shown here that 
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such relations are much more general, being valid for a class of nonlinear 
Hamiltonian evolution equations, and not only for the sine-Gordon equation. 

Certainly, not all field equations which are Hamiltonian are expected to 
lead to de Broglie-type relations--rather, there are some from which such 
relations can be obtained. They belong to the family here called complex 
Hamiltonian evolution (CHE) equations. The next section will define them 
and present some of their properties, which will be used in Sections 3 and 4. 

2. C O M P L E X  HAMILTONIAN E V O L U T I O N  EQUATIONS 

In this section it will be shown that: 
(a) All systems of partial differential equations of the form [see equa- 

tion (2.8)] 

�9 0 + s  a 
t - - -  - - H [ O * , O ] ,  k =  1 , 2  . . . . .  r 

c~t aO~," 

are Hamiltonian evolution systems. Here 0 = ( ~  . . . . .  +r) is an r-component 
field and ~*  is its complex conjugate, a/8O~ is the variational derivative of 
the real-valued functional 

H[** '  O] = I ~ ( * * '  O' a**0xi ' a*Oxi, " " ") d3x' i = 1, 2, 3 

with respect to ~ .  Such systems will be called complex Hamiltonian evolution 
(CHE) equations/systems. 

(b) Associated with every CHE system there is an infinite-dimensional 
Poisson bracket [see equation (2.10)] 

,R,S] l ;f(0  as as ) 
= t k=l a*'~ aOk d3x 

for the functionals R = RIO*, ~]  and S = S[O*, ~]. 
(c) For all linear and nonlinear CHE systems/equanons which are gauge 

type I invariant the Hermitian norm (1.1) is constant in time. 
(d) Both the Schr6dinger and Dirac equations are CHE equations. 
To my knowledge, the above results have not been published previously. 

The reader not interested in how they were obtained and willing to accept 
them "as given" can omit this section. 

The most general form of a system of Hamiltonian evolution equations 
for the components us = us(x, t) of the field u is 

Ouk a 
0--t- = ~ Js ~-~u~ H[u] (2.1) 
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where Jk a re  skew-adjoint differential operators, H[u] is the Hamiltonian 
functional for the field u, and 8/SUk is the variational derivative with respect 
to Uk (Olver, 1993, Chapter 7). 

However, the form (2.1) is too general for the purposes of this paper. 
We would like to have a form which is as specific as possible, and yet is 
general enough to contain as special cases the fundamental equations of 
quantum mechanics together with the nonlinear equations which in some 
respect are related to the quantum mechanical equations. Since the former 
are complex, such a form then has to represent a class of complex Hamiltonian 
evolution equations, both linear and nonlinear. It turns out that the desired 
form can easily be deduced by following the same process of extending a 
finite-dimensional real Hamiltonian system to an infinite-dimensional one [the 
process by which (2.1) was deduced (Olver, 1993, Chapter 7)], as shown next: 

It is known that any Hamiltonian system 

dq~ _ c) H(q, p), dp~ _ c9 n(q,  p), n = 1, 2 . . . . .  s 
dt Op~ dt Oqn 

(2.2) 

with a finite number of real canonical variables can be transformed into a 
more compact system of complex equations 

dz~_  ~ H(z*,z),  where 0---~-- 1 (0-~ d )  
dt i Oz* Oz* - ~  + i Op. (2.3) 

or  

where dt = i Oz, oz, x/~ ~ i (2.4) 

when its Hamiltonian is expressed as a function of the complex variables 

1 1 
zn = ~ (q~ + ip~) and z* = --~ (qn - ip~) (2.5) 

The factor 1/,/2 which appears in these expressions is introduced only for 
convenience. In the above systems, z, plays the role of the generalized 
momenta and its complex conjugate z* that of the generalized coordinates. 
But such distinctions are not of much significance, for the roles can easily 
be exchanged. When H(z*, z) is a real-valued function of z~ and z*, the two 
systems (2.3) and (2.4) are equivalent. Thus, one of them can be dropped 
without loss of information, showing that the complex Hamiltonian system 
consists of half as many equations as the real one. 

Actually, a simple preliminary transformation must be applied to qn and 
Pn SO that the dimensionalities of the new variables q'~ and p" become the 
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same. Otherwise, they cannot be combined into the complex variables z, and 
z*. The dimensionality of the products q,p, is always the same--that  of 
action. Hence, the transformation 

1 
q" =a.q.  and p ' . = - - p ,  with n = 1,2 . . . . .  s (2.6) 

an 

will make the dimensionalities of q', and p', the same if the dimensionalities 
of the constants an are given by 

dms(a.) = x/dms(p.)/dms(q.) 

Since this transformation does not alter the form of the Hamiltonian system 
(2.2), we can assume that it has already been applied when the complex 
transformation (2.5) is performed. This shows that the dimensionality of 
z~zk is always that of action. 

One finds easily that the transformation (2.5) "preserves" the Poisson 
bracket of any two real-valued or complex-valued functions R and S (the 
summation convention of repeated indexes applies to the rest of the paper): 

{ R , S } - O R  aS aS O R _  I (OR bS aS a_if_R] (2.7) 
bq. Op. Oq. bp. i \Oz. bz* Oz. bz* } 

Thus, (2.5) can be considered to be a kind of canonical transformation. 
To obtain a complex  evolu t ion  equat ion  descr ib ing the f ield 

= ~J(x~, Xz, x3, t), we start with the finite complex Hamiltonian system 
(2.3) and increase the number s of the generalized coordinates zn to infinity. 
It is known how to perform such a transition when the coordinates are real- 
valued (Olver, 1993, Chapter 7). We extend the same procedure to the complex 
case by replacing (a) the set of all coordinates zn with the d~-field, and the 
z* with the ~*-field, (b) the ordinary time derivative dldt with the partial time 
derivative blot, (c) the Hamiltonian function H(z*, z) with the Hamiltonian 
functional H[d~*, 0],  and (d) the partial derivatives O/Oz., O/Oz* with the 
variational derivatives 8/St~k, 8/St~f, where ~ = (t~ 1 . . . . .  Or) is an r- 
component field and 0* is its complex conjugate. The result is a system of 
r complex Hamiltonian evolution equations, one for each component of the 
d~-field: 

i - -  H[~*, ~J] = --iHk(~*, d~), k = 1, 2 . . . . .  r (2.8) 
at 8t~ 

The Hamiltonian functional H is an integral of some real-valued Hamiltonian 
density ~ over all space (all functionals will be denoted with roman capital 
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letters, all densities with script capital letters, and all operators with bold 
italic capital letters): 

H[O*, Ol = f ~ ( 0 " ,  O, OiO*, c3iO . . . .  ) d3x, i , j  = 1 ,2 ,3  

where 0i stands for the derivative with respect to the space coordinate xi. 
may contain derivatives of order higher than the first. Accordingly, the 

variational derivative of H with respect to 0~ is given by the Euler-  
Lagrange expressions 

_ d 2 O ~  

8q1'~ O~J~ �9 d x  i O(Oiqj~) , d x  i d x j  O(Oijql~) 

(2.9) 

where Hk(0*, 0 )  are operators acting on 0 ,  nonlinearly in general. 
The expression for the infinite-dimensional complex Poisson bracket of 

two functionals R = R[~*, 0]  and S = S[q**, q*] is defined by performing 
the transition s -+ ac (a finite to an infinite set of generalized coordinates) 
on the finite-dimensional complex Poisson bracket (2.7) (both finite- and 
infinite-dimensional Poisson brackets will be denoted by the same symbol 
{., �9 }, since it will be clear from the context to which type it refers): 

{R,S} = lI(8_~k 8S 8S ~ )  
t ~t~ ~t~lr d3x (2.10) 

H is routine to verify that (2.10) satisfies all the requirements for a Poisson 
bracket. This is an exact form-replica of the classical infinite-dimensional 
Poisson bracket 

{R'S}cL=f(8  8 k) d3x (2.11) 

where -q~ = "q~(x, t) and % = %(x, t) are the components of two real, 
canonically conjugate fields. However, the bracket (2.10) has an important 
advantage over the latter. It is not evident how the latter could be made 
Lorentz-invariant, since the definition of the fields -q~ and "rrk depends on the 
frame of reference. Clearly, this criticism does not apply to the complex 
Poisson bracket (2.10). Details and a discussion of the difficulties with (2.1 l) 
can be found in Goldstein (1980; Section 12.14). 

The time derivative of any functional R = R[q**, 0,  t] is given in terms 
of the complex Poisson bracket, as in the real finite-dimensional case, by 
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dt O----t aO~ at / d3x + 0--7 

= a u  8H 8_~) OR {R,H} + aR 
t 80~ ~Ok d3x + O----t = 0--7 (2.12) 

Proof 

~-0o _ 0qqi 0 ~  ~ = i (  00k 00ff ) 
Ot O(OtTli ) 2 0~ at at 0k - • = ~ (2.14) 

where the field "q has 2r components, with i = 1, 2 . . . . .  2r, 

= (~1,  ~2 . . . . .  ~ 2 0  = (01 . . . . .  Or ,  ~ . . . . .  0~) �9 

Most of what follows depends on the validity of identifying the 0-field 
total energy with the value of the Hamiltonian functional for that field (within 
an additive constant). This proposition assures us that such an identification 
is well justified, and that it is not a mere assumption. 

If the Hamiltonian functional H[O*, O] does not depend explicitly on the 
time, then it is constant, as seen from (2.12). 

It is simple to verify that equations (2.8) can also be obtained as the 
conditions, i.e., the Euler-Lagrange equations, for the extremum of the 
functional 

I L[O*' O] dt = I f  ~'  d3x dt = I f  (iO* O--O-O - ~ )  d3x 

where 0* = (0*) t is the transpose of the complex conjugate of 0- This 
establishes that L[0*, 0 ]  is the Lagrangian functional, and that the relation 
of the Lagrangian density ~'  of the 0-field to its Hamiltonian density ~ is 
~' = iO* OO/Ot - ~. The same equations (2.8) are obtained if we start with 
the complex conjugate ~ '* .  Hence, we can define a real Lagrangian density 
by s = (~ '  + ~'*)/2,  

i (  O0 O0 t ) 
= ~  0 t O - g (2.13) 

Ot Ot 

which makes the Lagrangian functional also real-valued. The last relation 
allows us to give simple proofs to the following two propositions: 

Proposition 1. The O-field energy density, i.e., the ~-0o component of  
the stress-energy four-tensor, is equal to the Hamiltonian density ~ .  
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Proposition 2. The Hermitian norm 

(~' ~> = I ~+~ ~3x (2.15) 

is a first integral of all CHE equations whose Hamiltonian density ~ is 
invariant under the gauge transformation of the first type 

~11~ = ~11 k e i" and ~'k * = ~ll'~e -i" (2.16) 

where ~ is the transformation parameter and k = 1 . . . . .  r. 

Proof From (2.13) we see that if ~ is gauge type I invariant, then so 
is the Lagrangian density ~ .  Hence, according to Noether's theorem, the 
following conservation law holds: 

0~  
- -  + V . ~  = 0 ( 2 . 1 7 )  
Ot 

where the density ~ and theflux ,~ = (U~ l, o~z, ~3) are given by 

: i Ill ff O(Otl~Jff) O(Otl]lk ) I~Jk �9 ~i  = i ~ff O(Oi~ff) O(Oi~k) ~k 

(2.18) 

Here, for economy of writing, it was assumed that ~ contains only first- 
order space derivatives which does not affect the generality of the proof. 
Using the expression (2.13) in (2.18), one obtains 

= +~'~k = ~+~ (2.19) 

~ (*'*>= ~ I I 
at -~ dYtlll d3x = - 7 .  ~ d3x = 0 �9 (2.20) 

Alternatively, one can use the relation (2.12) with R = (~, ~),  then 
take into consideration the invariance of ~ under (2.16), and arrive at the 
same conclusion, without relying on Noether's theorem. 

Both the Schr6dip.ger and Dirac equations are of the form 

O~k O~ = H ~ ,  k , j  = 1, r (2.21) i 0---t- -~ nkj t~j or i O t  . . . .  

This form is derivable via the rule (2.8) from real-valued bilinear Hamilto- 
nian functionals 

H[~*, ~ ] =  ( d~H,j d~j d3x = ( ,l, tH~ d3x (2.22) 
.t ) 
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where the linear operators Hkj are the elements of the matrix differential 
operator H, which is Hermitian because H[O*, ~] is real-valued. Hence, the 
Schr'odinger and Dirac equations belong to the family of linear CHE equations, 
which shows that (2.8) is of the desired type. 

It should be noticed that in general, a solution of a CHE equation cannot 
be normalized and remain a solution of the same equation (as is the case in 
quantum mechanics), since the CHE equations are not necessarily linear. 
Consequently, the quantity (0, ~)  is not dimensionless, and in fact its dimen- 
sionality is always that of action. This follows from Proposition 1 and the 
general form (2.8) of the CHE equations, or by observing that the dimensional- 
ity of z*zn in a finite complex Hamiltonian system is always that of action, 
as noted earlier. 

3. DE B R O G L I E - T Y P E  R E L A T I O N S  

The nature of the de Broglie relations tells us that the only evolution 
equations from which one may expect relations of this type [as defined in 
question (b) of Section 1] are those which are derivable from a Hamiltonian 
density, so that the conservation of energy is guaranteed for an isolated system 
by Proposition 1, and which, in addition, are either Galilei-invariant or 
Lorentz-invariant. Only the Galilei invariance case and solutions with a single 
region of localization will be considered in this paper. The case of Lorentz 
invariance will be left for a subsequent paper. 

It is known that the nonlinear CHE equations of the form 

i 0__~_0 = ItV2111 q_ G'(O*O)~ (3.1) Ot 
where tt is an unspecified real constant and ~ is complex in general, are 
Galilei-invariant and that some of them possess space-localized solutions, 
including solitons (in the case of one space dimension). All such equations 
are derivable from the Hamiltonian functional 

H= f ~f. d3x= f (-itV,'~.Vt~k + G(*t*))d3x (3.2) 

where G'(p) = dGp)/dp and G(p) is any function such that the stationary 
solutions d~(x, t) = g~(x) exp(-ito0t) of (3.1) have a finite norm 

(O, ~J) = f llttO dax = f q~2 dax < ~176 

which in turn assures the localization of the d,J-field. Here, the field ~ is real, 
but not necessarily scalar, and q~2 = E~=l q~2. 
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Let the stationary O-field be observed from a coordinate system moving 
with a velocity - v  relative to the original system, so that in the new system 
the velocity of the field's region of localization is +v. Then the solution must 
be transformed as 

O'(x,  t) = qffx - vt) e i(k'x-t~ = ~o'e i(k'x-'~ (3.3) 

where to is the new frequency and k = (kx, k2, k3) is an as-yet-unspecified 
vector, both depending on the transformation parameters v = (v~, v2, v3). By 
substituting this ansatz into equation (3.1) and observing that both ~o = ~o(x) 
and ~o' = ~o(x - v0 are solutions of 

too ~o = ixV2~o + ~o G'(~0 2) 

one finds that the conditions 

v = - 2 t ~ k  and to - too = - t xk2 (3.4) 

must hold if (3.3) is to be a solution of equation (3.1). Then, if we have to 
associate a wave with the space-localized O-field, (3.3) tells us that when 
the conditions (3.4) are met, exp i (k -x  - tot) is such a wave, modulated by 
the function ~o(x - vt). This simple identification has remarkable implications, 
which will be briefly discussed in Section 5. 

Now it will be shown, without relying on an "external assumptions," 
that to and k satisfy de Broglie-type relations in which the energy and the 
momentum are those of the O-field, instead of those of some fictitious 
pointlike particle. When k is eliminated from the expressions (3.4), we see 
that the change of frequency is quadratic in v, 

V2 
(3.5) to - too - 4~  

just as the kinetic energy of a material object is quadratic in its velocity. By 
Proposition 1 the O-field energy is given by the value of  the Hamiltonian 
functional (3.2) (within an additive constant, which is irrelevant for this 
derivation) 

E = f o] d3x 
when the specific solution O is inserted in it. Then equation (3.1) can be 
used to eliminate all space derivatives in E as follows: 

E = f ( - i . z V ~ '  "Vt~k + G) d3x 

= ~ I (OtV20 + V20* O) d3x + f G 
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Hence 

'f( o ) f E ~ Ot Ot O0*Ot Ill d3x + (a - 1~l/12G ') d3x (3.6) 

The intermediate step was necessary to ensure that E is always real. Substitut- 
ing the stationary solution O(x, t) = q~(x) exp(-itoot) and the Galilei-trans- 
formed solution (3.3) into the last expression, we get correspondingly the 
energy of the stationary field 

Eo = too f q~2 d3x + f (G(tp2) - q~2G'(q~2)) d3x 

and the energy of the "moving" field 

E =2 f ((-i~q~'2- q~'kv.Vq~'k) - (itoq~'2- q~'kv'Vq~'k)) d3x 

+I(G(q~'2)-q~'2G'(tp'2))d3x 

= oJ f q~2 d3x + f (G(q~2) - qflG'(q~2)) d3x 

The integrals f ~2 d3x and f (G(tp 2) - ~2G'(~2)) d3x remain the same when 
q~ is replaced with its space translate q~', that is, they do not depend on v. 
Accordingly, one obtains that the energy change is proportional to the fre- 
quency change, and by expression (3.5), that it is proportional to the square 
of the velocity v, 

f E - g o =  ( m -  coo) ~p2d3x= (m_tOo)(O,q~)- 41 x(qJ,q~) 
(3.7) 

Therefore, the energy difference E - E0 must be identified with the kinetic 
energy of the @field, which is due to its translational motion, and the field 
must be endowed with a mass which is given by 

1 f q~2 d3x = 1 (0, ~b), with ~ < 0 (3.8) 
m - 2tx -2---~ 

Since the kinetic energy cannot be negative, the constant ~ must be cho- 
sen negative. 

Expression (3.7) is a de Broglie-type relation in which the Hermitian 
norm (0, ~J) plays the role of Planck's constant h (both h and h will be 
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called Planck's constant when no danger of ambiguity exists). We already 
saw that, since to is not normalized and the Hamiltonian functional is identified 
with the to-field energy according to Proposition 1, the dimensionality of 
(to, to) for any CHE equation is action, which is the same as that of 
Planck's constant. 

The relation between the kinetic energy and the frequency change can 
be derived without assuming a specific form for the CHE equation, like (3.1). 
It is sufficient to assume that the Lagrangian functional for the to-field is 
Galilei-invariant. When the Hamiltonian density ~[to*, to] is known, the 
Lagrangian density s to] for any CHE equations is given by expression 
(2.13). The Galilei transform of the stationary solution has the same form as 
(3.3), except that now the wavevector k = k(to) is an unspecified function 
of to. Taking this into account, the term with the time derivatives in ~[to*, to] 
gives 

'( ) to,, Oto' i , , 
Ot 0t = ~ q~(v'Vq~) - (v'Vq0k)q~k + toq~'2 = toq~,2 

Inserting the latter into (2.13), solving for ~ ,  and integrating while noticing 
that q~' is a space translation of q~, we find that the energy of the "moving" 
field is 

E = f ~d3x  = to f ~p'2 d3x - f ~ d3x --: to f ~p2d3x - t 

The energy of the stationary field, obviously, is 

Eo = too f q)2 d3x _ Lo 

Here, Lo and L are the values of the Lagrangian functional evaluated respec- 
tively with the stationary and with the Galilei-transformed solutions. By the 
Galilei invariance assumption, L = L0; hence E - E0 = (to - to0)(to, to), 
which is the same de Broglie-type relation as in (3.7). 

The de Broglie-type relation which connects the momentum my of a 
nonrelativistic localized field with the wavevector k of its associated wave 
is obtained by expressing t* = - ( to ,  to)/2m from (3.8) and inserting it into 
the first of conditions (3.4), 

v = -2 lxk  = _1 (to, to)k or p = mv = (to, to) k (3.9) 
m 

We see that the norm (to, tO) appears again in place of Planck's constant. 
The following section provides independent evidence showing that the appear- 
ance of (to, to) in place of h is not coincidental. 
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4. THE QUANTUM COMMUTATOR 

It is simple to show that even for certain nonlinear CHE equations the 
characteristics of the O-field as a whole, such as its position, velocity, and 
momentum, are given with real-valued bilinear functionals, and hence they 
are associated with Hermitian operators. For example, consider a localized 
solution 0 of equation (3.1). One can define the position X = (Xl, X2, X3) 
of the O-field, as a whole, with the functionals 

,f  Xi - (0, O) O+Oxi d3x' with i = 1, 2, 3 (4.1) 

This is the most natural way to specify the "center" of any distribution, 
regardless of the equations which describe it. Of course, (4.1) is identical 
with the expectation value of the position operator x in QM, except that the 
integral is divided by (O, 0). However, no probabilistic interpretation will 
be attached to it, or to any other expectation values, since such would be 
entirely unnecessary. 

To find the velocity of the O-field as a whole, we calculate the time 
derivative of Xi using the functional Poisson bracket (2.12), 

V, = ~ - i(O, O-----) \BOk 80~ ~0, ~0~] d3x -- i(O, O) O~' OX---7~ dax 

where H is given by (3.2). Hence, the velocity functional is associated with 
a Hermitian operator, whose form is identical with that of the momentum 
operator of quantum mechanics, even for some nonlinear evolution equations. 
This result can be generalized as follows. Consider two bilinear real-val- 
ued functionals 

I f  - l f o+SO d3x (4.2) R - (O, O> O*RO d3x, S <O, 

associated with the Hermitian operators R and S. If they are to represent 
expectation values, their integrals must be divided by (O, O), since the 
O-field is a solution of  a nonlinear equation, and hence it is not normalized. 
Then, it follows immediately from (2.10) that their infinite-dimensional Pois- 
son bracket 

8~  80k ~-~k* d3x 

- i(O:O)2 I ((RO)+SO- (SO)+RO) d3x 

_ 1 f O+ R S  - SR  (O, O) 3 i(O, O) O d3x 
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is associated, precisely by the same rule (4.2), with the linear Hermitian 
operator 

1 
[R, S]Q M - -  i(O, 0-------) (RS - SR) (4.3) 

An expression with the same form was obtained by Magri (1976), who 
followed a different path. However, the constant (0 ,  ~ )  does not enter in his 
result, because the functionals in his derivation are not normalized. Expression 
(4.3), of course, is the quantum Poisson bracket as Dirac (1958) called it, 
except that (~, ~ )  appears in place of Planck's constant h. Again! 

By now, one recognizes that the seemingly trivial normalization proce- 
dure of quantum mechanics has a striking consequence when the field equa- 
tions are nonlinear CHE and invariant under gauge type I transformations. 

5. CONCLUSIONS 

(a) It was shown that de Broglie-type relations hold for the space- 
localized singularity-free fields, whose form (3.3) as solutions of certain 
complex Hamiltonian evolution equations is 

~(x,  t) = ~p(x -- vt) e i(k'x-t~ 

where Iq~(x)t --4 0 sufficiently fast when Ixl ---> ~. The complex wave 
exp i(k. x - tot) satisfies all the requirements for a de Broglie wave [relations 
(3.7) and (3.9)]. Moreover, its group velocity (Oto/akl, Oto/Ok2, Oto/Ok3) 
obtained directly from the conditions (3.4) 

0to 
- --2pLk,- = vi, i = 1, 2, 3 (5.1) 

ok/ 

is equal to the region of localization velocity v, which is the translational 
velocity of the modulating function ~p(x - vt). 

There is a curious observation to be made here: The identity (5.1) holds 
regardless of how energy and mass are assigned to the @field, and for any 
real value of the constant ix. Hence, it precedes the de Broglie-type relations, 
since the last are meaningless without these assignments. The same cannot 
be said for the corresponding identity in quantum mechanics, where it is 
derived from the de Broglie's relations. 

(b) The de Broglie-type relation (3.7) applies, as already shown for the 
Galilei invariance case to the kinetic energy, not to the total energy. This is 
in a complete agreement with the corresponding de Broglie relation proper 
in nonrelativistic quantum mechanics. In general, the total energy of the 0 -  
field [given by (3.6)] is not proportional to the frequency to, and its relation 
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to to is different for different nonlinearities, that is, for different functions 
G(~t~) .  

(c) The uncertainty relation ~ x A p  >_ hi2 does not hold for the above 
solutions: While the "width" of  the @field region of localization Ax is finite, 
the "spread" in its momentum Ap = <~, ~>Ak is zero, of course. In quantum 
mechanics, due to the linearity of its equations, free particles can be repre- 
sented only by wave packe t s - -ob ta ined  as Fourier integrals over k. Hence, 
the "spread" in k (or in the momentum p) is unavoidable. When the field 
equations are nonlinear, in place of the wave packets we have expressions 
like (3.3), with k and to assuming well-defined single values. It is known 
that any wave packet dissipates itself with the passage of time, which is not 
really compatible with the concept of a particle. This is not necessarily the 
case with the solutions of nonlinear CHE equations. 

Led by considerations entirely different from those above, Dirac con- 
cluded that the above relations, as understood now, are not fundamental: "I 
think one can make a safe guess that the uncertainty relations in their present 
form will not survive in the physics of the future" (Dirac, 1963, p. 49). 

(d) The results of this paper are completely independent of  the function 
G(~t~) ,  which determines the nonlinear term (provided that <~, ~> is finite, 
of course). In view of  the universality of the de Broglie relations, this is very 
satisfying. However, the freedom in choosing G (~ t~ )  does not mean that it 
can be set proportional to ~ t ~ ,  and thus allow the same arguments to be 
applied also to linear CHE equations. For, without the nonlinear term the 
value of <~, ~J) will be either undefined or divergent (for the singular solu- 
tions), which will destroy the validity of the above arguments. 
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